欢迎访问 四川中建成特种玻璃有限公司官网!
134 0855 2216
当前位置:首页>>产品知识>建筑防火玻璃的表面处理技术讨论
联系我们

四川中建成特种玻璃有限公司

地址:成都市龙泉驿区龙工南路1318号
手机:134 0855 2216

建筑防火玻璃的表面处理技术讨论

发布时间:2019-08-06 点击数:1293
 

根据GBl5763.1-2009《建筑用安全玻璃防火玻璃》的规定 
1
、建筑用防火玻璃按结构分为:复合防火玻璃(FFB)和单片防火玻璃(DFB)。

复合防火玻璃:是由两层或两层以上玻璃复合而成,或由一层玻璃和有机材料复合而成,并满足相应耐火等级要求的特种玻璃。单片防火玻璃:是由单层玻璃构成,并满足相应的耐火等级要求的特种玻璃。
防火玻璃按结构型式又可分为:防火夹层玻璃、薄涂型防火玻璃、单片防火玻璃和防火夹丝玻璃。其中防火夹层玻璃按生产工艺特点又可分为复合型防火玻璃和灌注型防火玻璃。

 

2、防火玻璃的技术要求
建筑用防火玻璃的耐火性能是将防火玻璃直接镶嵌在墙洞中或与框架组合好再镶嵌在墙洞中制成构件按GBl2513进行耐火试验而得的,它包括耐火完整性、耐火隔热性、热辐射强度的测定。其中,隔热性的测定以背火面温度作为判据。
根据GBl5763.1-2009《建筑用安全玻璃防火玻璃》的规定,建筑用防火玻璃按其耐火性能分为:A类(同时满足耐火完整性、耐火隔热性要求的防火玻璃),B类(同时满足耐火完整性、热辐射强度要求的防火玻璃),C类(满足耐火完整性要求的防火玻璃)。这三类防火玻璃按耐火等级可分别分为I级(≥90min)、Ⅱ级(≥60min)、Ⅲ级(≥45min)、Ⅳ级(≥30min)。耐火完整性--指试件背火面出现火焰,并持续燃烧10s10s以上;在试验过程中,当试件有火焰或气体从孔洞和其它缝隙处出现时,进行棉垫着火性试验,棉垫被点燃,则表明试件失去完整性(如果试件在试验过程中垮塌,同样表明试件失去完整性)。
耐火隔热性--指试件背火面测温点单点温升180℃,平均温升140℃。
热辐射强度--指距试件背火面3 m处,临界辐射热照度达到0.42Wcm2,及距试件背火面在等于其较小尺寸(长度或宽度)1.2倍的距离内,临界辐射热照度达到3.35Wcm2

3
、火玻璃的构成和工作原理
复合型防火玻璃(或称防火夹层玻璃)是将两片或两片以上的单层平板玻璃用膨胀阻燃胶结剂粘结复合在一起而制成的;其中灌注型防火玻璃是在两片或两片以上的单层平板玻璃的四周先用边框条密封好,然后由灌注口灌人防火液,经胶结、封口而制成;在室温下和火灾发生初期,复合防火玻璃和普通平板玻璃一样具有透光性能和装饰性能;发生火灾后,随着火势的蔓延扩大,火灾温度升高,复合防火玻璃防火夹层受热膨胀发泡,形成很厚的防火隔热层,起到防火隔热和防火分隔作用。但复合防火玻璃一般有微小的气泡及不耐寒、透光性差等问题,影响其使用的效果。
薄涂型防火玻璃是在单层或多层平板玻璃基材表面喷涂防火透明液,干燥固化后即制成防火玻璃。薄涂型防火玻璃遇火时,防火保护层受热膨胀,形成致密的防火保护层,保护基板玻璃,阻止火灾蔓延扩大。
防火夹丝玻璃按结构分为夹丝玻璃和防火夹丝夹层玻璃。夹丝玻璃是用压延法生产的一种安全玻璃。当玻璃液通过压延辊之间成型时,将经过预热的金属丝或金属网压于玻璃板中,即制成夹丝玻璃。防火夹丝夹层玻璃是在复合防火玻璃生产过程中将金属网置于夹层中制成的。夹丝玻璃受到外力或在火灾中破裂时,玻璃碎片仍可固定在金属丝或网上而不脱落,可防止火焰穿透,起到阻止火灾蔓延的作用。夹丝玻璃最大的缺点是隔热性能很差,发生火灾十几分钟背火面温度高达400500℃。防火夹丝夹层玻璃同时具有夹丝玻璃和防火夹层玻璃的优点,有一定的推广应用前景。但是,我国生产的夹丝玻璃不透明,起不到玻璃的透光和装饰作用,影响了它的推广应用。
单片防火玻璃是采用物理与化学方法对普通玻璃进行处理,使其表面改性,改善玻璃的抗热应力性能,从而保证在火焰冲击下或高温下不破裂,达到阻止火焰穿透防火玻璃及传播火灾的目的。由于单片防火玻璃的重量轻,透明度和装饰性与普通玻璃一样,因而在越来越多的建筑中得到应用。但单片防火玻璃不能阻挡火焰的热辐射,只能通过C类防火玻璃的检测,当其用做防火分隔时须考虑这一点。

4
、单片型防火玻璃的表面处理方法:
4.1 
防火玻璃的表面应力

贝尔比层和残余应力;固体材料加工后,在几微米至十几微米的表层中可能发生组织结构的剧烈变化。如在金属研磨时,由于表面不平整,接触处实际上是点,其温度可以远高于表面的平均温度。由于作用时间短,摩擦后该区域温度迅速冷却下来,原子来不及回到平衡位置,造成一定程度的晶格畸变。这种畸变随深度而变化,在最外层约510nm可形成一种非晶态,其成分为金属及其氧化物,即为贝尔比层。贝尔比层可提高材料的表面强度。经表面加工处理后,材料表层形成的贝尔比层产生很大的残余应力,材料受热不均匀,在各部分膨胀系数不同,温度发生变化时就会在材料内部产生热应力。材料受载时,内应力与外应力一起发生作用。如果内应力与外应力相反,就会抵消一部分外应力,从而起到有利的作用,钢化玻璃正是利用了这一特性。此外,钢化玻璃表面压应力可使引起玻璃破裂起源的微小裂缝受到进一步的压缩,也提高了钢化玻璃的机械强度。
我们知道普通玻璃的表面压应力一般为1565兆帕;钢化玻璃的表面压应力一般在70180兆帕;高强防火玻璃的表面压应力比传统工艺生产出来的钢化玻璃高出100150兆帕左右。这层表面压应力的特点同时具有物理钢化形成的足够应力层厚度和化学钢化形成的高表面应力值,通过工艺控制可以使玻璃表面应力甚至达到400兆帕,使得玻璃强度大大提高。
根据热弹性力学可以导出热应力在面内的变化为:
式中:α是膨胀系数,E是弹性模量,T0是最大温差值,L是玻璃板的半长,X是板中央沿轴线任意一点的位置。
所以,热应力是与温差成正比例关系的。

 

设强度分布服从Weibull分布,不同应力水平下的破坏概率可表示为:
式中:P是破坏概率,σ是应力水平,σ0是特征强度,mWeibull模数。
根据公式(1)和(2)可以计算出与不同温度对应的破坏概率。理论计算表明,当玻璃中间与边缘的温差达1000℃时,高强玻璃才会因热应力而破坏,而这个温度早巳超过玻璃的软化点,所以理论上高强玻璃在火灾中不会因受热冲击而破裂,但会被烧软后垮塌。
试验也证明,平板玻璃经钢化强化后,其抗急冷急热性大为提高,见下表1
理论和实验都说明,提高玻璃表面的压应力,也就提高了玻璃的耐热冲击性能,从而提高了其防火、耐火性能。

4.2 
提高压应力的物理处理方法
普通平板玻璃,如浮法玻璃等是可以增强成为钢化玻璃的。平板玻璃的热钢化过程,是把经切裁、磨边、打孔、清洗等冷加工的半成品送入钢化炉中,加热至钢化温度(650℃一700℃),移至风栅处吹风急冷。冷却过程中玻璃表面迅速冷却固化,而内部冷却较慢。当内部继续收缩时,使玻璃表面产生残余压应力,而内部为张应力。
由于火灾的热辐射作用或火焰(高温烟气)直接作用在玻璃表面,造成玻璃表面急剧受热。玻璃耐热冲击性能的提高,意味着在火灾时更能保证其完整性。因此,钢化玻璃的耐火性能要比普通玻璃好得多,但一般的钢化玻璃还达不到防火玻璃的耐火性能要求。

4.3 
提高压应力的化学处理方法
典型平板玻璃的化学成分为:SiO270%~74%),Na2012%~15%),CaO8%一10%),MgO10%一38%),A120302%一18%);K200%~05%),另外可能还含有少量的FeS等。在玻璃表面喷涂钾盐溶液或铯盐溶液,干燥后在热处理炉内进行化学钢化。其原理是通过含有高浓度的K+Cs+,在普通玻璃的表面层置换出玻璃中的Na+,由于K+Cs+的半径远大于Na+的半径(KCsNa为同一主族原素),将增加在玻璃表面产生的压应力。大量杂质的注入弥散,在高温下可产生弥散相,产生弥散强化,使表面强化。
而后对上述玻璃进行物理钢化,再贴上PET(聚对苯二甲酸乙二酯)低辐射膜,或喷涂金属膜、金属氧化物膜,如ITO(氧化铟锡)低辐射膜,就形成高强度,能反射红外线的单片镀膜防火玻璃。

5. 
结论
复合防火玻璃虽然已得到了广泛的应用,但单片防火玻璃由于其重量轻、透光性和装饰性好,在高温下能保持透明,便于观察火情和烟气状况,因而应用越来越多。通过对普通玻璃表面的化学和物理双重处理,提高其表面压应力,达到比一般钢化玻璃更高的强度,能经受住较大温差的热冲击,以达到阻挡火焰的目的。